Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
Mobile edge computing (MEC) is a paradigm novel computing that promises the dramatic effect of reduction in latency and consumption of energy by computation offloading intensive; these tasks to the edge clouds in proximity close to the smart mobile users. In this research, reduce the offloading and latency between the edge computing and multiusers under the environment IoT application in 5G using bald eagle search optimization algorithm. The deep learning approach may consume high computational complexity and more time. In an edge computing system, devices can offload their computation-intensive tasks to the edge servers to save energy and shorten their latency. The bald eagle algorithm (BES) is the advanced optimization algorithm that resembles the strategy of eagle hunting. The strategies are select, search, and swooping stages. Previously, the BES algorithm is used to consume the energy and distance; to improve the better energy and reduce the offloading latency in this research and some delays occur when devices increase causes demand for cloud data, it can be improved by offering ROS (resource) estimation. To enhance the BES algorithm that introduces the ROS estimation stage to select the better ROSs, an edge system, which offloads the most appropriate IoT subtasks to edge servers then the expected time of execution, got minimized. Based on multiuser offloading, we proposed a bald eagle search optimization algorithm that can effectively reduce the end-end time to get fast and near-optimal IoT devices. The latency is reduced from the cloud to the local; this can be overcome by using edge computing, and deep learning expects faster and better results from the network. This can be proposed by BES algorithm technique that is better than other conventional methods that are compared on results to minimize the offloading latency. Then, the simulation is done to show the efficiency and stability by reducing the offloading latency....
Computational intelligence has been widely used in medical information processing. The deep learning methods, especially, have many successful applications in medical image analysis. In this paper, we proposed an end-to-end medical lesion segmentation framework based on convolutional neural networks with a dual attention mechanism, which integrates both fully and weakly supervised segmentation. The weakly supervised segmentation module achieves accurate lesion segmentation by using bounding-box labels of lesion areas, which solves the problem of the high cost of pixel-level labels with lesions in the medical images. In addition, a dual attention mechanism is introduced to enhance the network’s ability for visual feature learning. The dual attention mechanism (channel and spatial attention) can help the network pay attention to feature extraction from important regions. Compared with the current mainstream method of weakly supervised segmentation using pseudo labels, it can greatly reduce the gaps between ground-truth labels and pseudo labels. The final experimental results show that our proposed framework achieved more competitive performances on oral lesion dataset, and our framework further extended to dermatological lesion segmentation....
Satellite telecommunication systems promise to bridge digital gaps and deliver wireless communication services to any corner of the world. However, despite satellites’ global connectivity and wide footprint, still atmospheric and dust impairments are open challenges that face satellite systems, especially at high-frequency bands in arid and semiarid regions. .erefore, this paper aims to predict joint effects of atmospheric and dust attenuations in Gulf Cooperation Council (GCC) countries on CubeSat communications using Artificial Neural Network (ANN). .e prediction model has been carried out using a massive Multiple-Input Multiple-Output (MIMO) antenna payload at K-frequency Bands. Consider these joint effects have positive relations in calculating satellites link margin, which leads to obtaining efficient communication system, delivering better quality of service (QoS), and enhancing Internet of .ings (IoT) connectivity, or even Internet of Space .ings (IoST). Predicated results infer that the ANN attenuation predictions, along with the 5G MIMO antenna on-board the CubeSat, offer much promise channel model for satellite communications, which in turn leads to not only supporting IoT connectivity but also reducing power consumption, thus enhancing lifetime of CubeSat. Also, this study can provide a reference for CubeSat engineers to guarantee large-capacity communication....
Deep neural networks with rate-based neurons have exhibited tremendous progress in the last decade. However, the same level of progress has not been observed in research on spiking neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low latency. This could be because the benchmarking techniques for SNNs are based on the methods used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and latency requires realization in suitable hardware, which imposes additional temporal and resource constraints upon ongoing projects. This review aims to provide an overview of the current real-world applications of SNNs and identifies steps to accelerate research involving SNNs in the future....
Accurate and timely traffic forecasting is an important task for the realization of urban smart traffic. The random occurrence of social events such as traffic accidents will make traffic prediction particularly difficult. At the same time, most of the existing prediction methods rely on prior knowledge to obtain traffic maps and the obtained map structure cannot be guaranteed to be accurate for the current learning task. In addition, traffic data is highly non-linear and longterm dependent, so it is more difficult to achieve accurate prediction. In response to the above problems, this paper proposes a new integrated unified architecture for traffic prediction based on heterogeneous graph attention network combined with residual-time-series convolutional network, which is called HGA-ResTCN. First, the heterogeneous graph attention is used to capture the changes in the relationship between the traffic graph nodes caused by social events, so as to learn the link weights between the target node and its neighbor nodes; at the same time, by introducing the timing of residual links convolutional network to capture the long-term dependence of complex traffic data. These two models are integrated into a unified framework to learn in an end-to-end manner. Through testing on real-world data sets, the results show that the accuracy of the model in this paper is better than other proposed baselines....
Loading....